
!

,_84- 3 19 55

NASA Contractor Report 165874

Fault Tolerant Software
Modules for SIFT

Myron Hecht and Herbert Hecht

SoHaR, Inc.
Los Angeles, California 90035

Contract NAS 1-15428

July 1982 -- -

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665

NASA Contractor Report 165874

Fault Tolerant Software
Modules for SIFT

Myron Hecht and Herbert Hecht

SoHaR, Inc.
Los Angeles, California 90035

Contract NAS 1-15428

July 1982

IWtSA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virclinia 23665

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1,|.

1.2.

Purpose , , 1

Overview of Fault Tolerant Error Reporter and Global
Executive Software ... 2

Organization of Report .. 3

Acknowledgements .. 4

2. ERROR REPORTER .. 5

2.1 •

2.2.

2.3,

2.4,

2.5.

Error Reporter Acceptance Test Description 5

Coverage of the Error Reporter Acceptance Test 5

Alternate Error Reporter 8

Implementation Requirements 8

Testing and Validation 11

3. GLOBAL EXECUTIVE ... 19

3.1 .

3.2.

3.3.

3,4.

3.5.

Global Executive Acceptance Test Description 19

Coverage of the Global Executive Acceptance Test 23

Alternate Global Executive 26

Implementation Requirements 26

Testing and Validation 30

APPENDIX A.

APPENDIX B.

APPENDIX C.

Error Reporter Driver Routine 42

Global Executive Driver Routines 49

Demonstration of Validation Procedures 63

REFERENCES ... 72

Figure

LIST OF FIGURES

Title Page

2.1

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3,7.

3.8.

3.9.

3.10

A.I

C.I.

C.2.

C.3.

Error Reporter Acceptance Test flow chart 5a

Error Reporter Acceptance Test Pascal Llsting 6

Alternate Error Reporter flow chart 9

Alternate Error Report Pascal Llstlng 10

Top Level tree for Error Reporter Failures 13

Classes of Error Reporter Failures 14

SIFT Configurations used for Failure Validations 15

Incorrect Characterization of a Functional Processor 16

Final Development of Fig. 2.8. 17

Flow chart for PREGEXEC 20

Flow chart for GEXECTEST 21

Pascal Listing for PREGEXEC and GEXECTEST 24

Flow chart for ALTGEXEC 27

Pascal Ilstlng for ALTGEXEC 29

Top Level Fault Tree for Global Executive
Validation 33

Classes of Global Executive Faults 34

Global Executive Detection Failure 35

Expansion of Fig. 3.7. 36

Spurious Identiflcatlon of a Functional Prccessor 38
Organization of Program DRIVER 42a

Error Reporter Validation Output 64

Global Executive Validation Output 69

Global Executive (VALGEX) Validation Output 71

ii

L IST OF TABLES

TABLE TITLE PAGE

2.1

3olo

3o2o

Faults for Which Valldatlon Testing is Required
for the Error Reporter Acceptance Test and Alternate
Error Reporter

Validation Tests for Global Executive Faulty
Processor Detection Failure

Validation Tests for Incorrect Retirement Erors
of the Global Executive

18

39

41

iii

SECTION 1 - INTRODUCTION

This Is the Final Engineering Report prepared for SRI International under
Subcontract No. 14395 covering the lmplementatlon of software fault tolerance
for critical modules of the SIFT operatlng software. The SIFT (Software

Implemented Fault Tolerance) Is an advanced computer concept developed by SRI
for the NASA Langley Research Center under Contract NAS1-15428 to support the
computational and rellabllll_/ requirements of advanced fly-by-wlre transport
aircraft.

Thls report complies with the requirements of Article IV Item D of SRI
Subcontract No. 14395.

Although this project constituted only a minor part of the SIFT effort,
considerable advances In concepts and implementation of software fault tolerance
were achieve under It. These are summarized In the paragraphs Immediately

following. Part 1.2 of the Introduction provides an overview of the specific
modules for which fault tolerant designs were generated, the error reporter and
the global executive. Part 1.3 describes the organization of the body of this
report, and Part 1.4 acknowledges the contribution of Individuals outside our

organization to this work.

1.1 ADVANCES IN SOFTWARE FAULT TOLERANCE IN THIS EFFORT

Because the software In the SIFT operating system is essential for both

scheduling of application tasks and recovery from hardware failures, special
efforts have been made to verify this sofl_are in a formal manner. In addltlon,

It Is being subjected to an extensive test program. Nevertheless, provision of
fault tolerance features was deemed desirable for selected portions of these

programs that have a key role In the recovery from failures. Note that this
software must perform In accordance with its speclflcatlon In the presence of
faults In one or more of the component computers of SIFT or In their
lnterconnectlons.

The fault tolerance technique selected for ,hls purpose Is that of the recovery
block ERAND75]. Speclflc Implementations of this technique to real-tlme

applications and the transport alrcraft environment had already been described
prlor to the effort reported here EHECH76, AER078_. The basic structure for a
recovery block Is

Ensure T

By P

Else by Q

Else Error

where T Is an acceptance test condition, i. e. a condition which Is expected ,o

be met by succesful execution of either the primary routlne P or ,he alternate
Q. The Internal control of ,he recovery block ,ransfers to Q If ,he test
condition Is not met by executing P.

The effectiveness of the fault tolerance provisons depends on the coverage of
the acceptance test and the avoidance of correlated failure mechanisms In P and
O. Prior work had dealt prlmarlly with software associated with a physical
process (e. g., attitude control), where the environment could be depended on to
furnish clues on the 'true' state of the process (e. g., by means of sensors
independent of those that furnished the primary Input data).

The uses served by the fault tolerant modules for SIFT are of an Intrlnslcally
logical nature, dealing with the reporting of errors and the action to be taken
after posltlve reports. For applications of this type, the environment does no?
furnish Independent clues, and the ttTuth w has to be teased out of the logical
process Itself. Athough the routines ?o whlch fault tolerance was applied were
quite small, the work was therefore quite challenging. The main contrlbutlon of
the effort reported here to the field of fault tolerant software Is the
evolutlon of a technique for formulating acceptance tests In logic oriented
applications based on conditions that are Inherently orthogonal ,o the Ioglc
Implemented by the primary routineo A very clear example of this technique Is
presented In the acceptance test for the error reporter In 2.2.

Further contributions will be found In the use of fault trees to Identify the
requirements for acceptance tests and to determine the completeness of the
coverage of these tests. Some Ilmltatlons of the recovery block technique were
encountered In constructing alternate routines that are truly independent of the
primary ones (and also of the acceptance test) for applications In which the
prlncipal operations are addition and subtraction (comparison). In all cases It
was at least possible to change the order of operations and thereby to avoid
common sequence dependent failures. Greater Independence might be achievable by
permitting alternate routines a larger scope (I. e., by letting one alternate
routine perform the computations carried out In several primary routines). This
concept seems worthy of exploration In future studies.

1.2. OVERVIEW OF THE FAULT TOLERANT ERROR REPORTER AND GLOBAL EXECUTIVE

SIFT achieves Its high reliability by use of multiple processors wlth an excess
of computing capacity. When a single processor falls, It is configured out of
the system, a measure which ensures survival of the computer as a whole. Thus,
an Important function of the SIFT operating system is the retiring of faulty
processors. A processor Is defined as faulty If its output differs from those
of other processors for a given task. The SIFT error reporter and global
execu, lve tasks collect Information on disagreeing processors, process It, and
designate processors for retirement +o the reconflguratlon task.

The error reporter analyzes error data collected by the voter to determine what
processors appear to be faulty and Indicates these In an error report. Because
a processor can not report Itself as faulty (even If the voter data would tend
to Indict it), error reports from each processor may differ. The global
executive reviews all error reports, and If two or more processors point ?o a
third as being faulty, then the result is transmil-ted to the reconfiguratlon

2

task.

The error reporter and global executive have been made fault tolerant by
applying the recovery block principle described In sectlon 1.1. Both tasks have
an acceptance test and recovery block assoclated with them. Thus, there now
exists a_error reporter and global executive as well as _.
Very few changes were necessary to the primary routines In order to Implement
the recovery blocks, and, with the exception of the addltlon of a single Integer
variable, no changes were made to the remainde_ of the system software.

As noted above, the error reporter acceptance test establishes that all
processors with an excessive number of disagreements with the voter output are
defected, and ensures that no properly functlonlng processors are designated as
faulty. The alternate error reporter operates Independently of the prlmary
routine, but produces an Identical output. The acceptance test Involves
approximately twenty PASCAL statements, and the length of the alternate error
reporter Is approximately the same as the primary. Thus, neither routine will
have a significant effect on the timing of the SIFT operating system.

The global executive acceptance test Is coded in two modules: the first, which
Is run before the primary routine, verlfles that all Input to the global
executive Is current, and the second, whlch Is run after the prlmary global

executive, checks for correct execution. If errors are detected by either
module of the acceptance test, the alternate global executive Is Invoked.

Execution of each of these routines Is checked by the other. Thus, the global
executlve checks on the executlon of the error reporter acceptance test on each
processor by means of the frame count encoded In the error words. Slmllarly, an

output of the global executlve whlch also has a frame count encoded wlthln It Is
checked by the error reporter In the subsequent frame. Notlflcatlon to the
system Is provlded In the case of elther error.

In addition to verifying correct executlon of their Immediately assoclated
primary routines, these acceptance tests can be expanded to glve some Indlcatlon

of the functioning of the reconflguratlon task. If a processor indlcated as not
working in the system status vector Is generating error reports, then obviously,
It has not retired. Although diagnosis of the discrepancy Is beyond the scope
of the tasks of the software developed here, an Indication is made to the system
that an off-normal condition exists, and appropriate action can be taken by the
operating system.

A major portion of the coding effort went toward the validation of the flve
Pascal procedures developed as part of the error reporter and global executive
recovery blocks. Driver routlnes wlth approximately 8 to I0 tlmes the amount of
code In these routlnes were developed In order to adequat61y support the large
number of test cases whlch had to be run during valldatlon.

1.3. ORGANIZATION OF THE REPORT

Section 2 describes the fault tolerant error reporter. Included are a
description of the acceptance test, the error conditions which it covers, a
description of the alternate routine, Implementation requirements for

Integration of the fault tolerant error reporter Into the operating system, and
a descrlptlon of the software validation. Section 3, which describes the fault
tolerant global executive, has a similar organization.

1.4 ACKNOWLEDGEMENTS

The authors wish to express their appreciation for the cooperation received In
thls effort from personnel of SRI International and of the NASA Langley Research
Center. Mr. Jack Goldberg gave guidance and support throughout thls work and

was particularly helpful In polntlng out from time to time that there was a
forest when the effort seemed directed at Individual trees, twigs or even

smaller manifestations of nature's bounty. Drs. Charles Welnstock and P.
Michael Mellar-Smith helped with Information on the primary SIFT software, on
the environment In which this operated, and on the Interfaces which had to be

observed In the design of the fault tolerance provisions. To Mr. Billy L. Dove
and Mr. Nicholas D. Murray our thanks for the support of this work and for

permitting us to participate In an Important area of fault tolerant computing.

4

SECTION 2= ERROR REPORTE_

The voter routlne of each processor in SIFT maintains Its own record of the
number of disagreements from the majority of all other processors. The SIFT
error reporter marks processors as being faulty based on the disagreement count

generated by the voter. The error reporter acceptance test compares the number
of recorded processor disagreements with ?he output of the error reporter, and
If processors are Incorrectly characterized as worklng or failed, it Invokes the
alternate routine.

2.1. ERROR REPORTER ACCEPTANCE TEST

The SIFT voter routine marks Individual processor disagreements from the

majorlty In an array designated as errors. The error reporter sets a bit in a
word called err for each processor with an excesslve number of disagreements as
reported in errors. Bits 0 through 7 In err represent the correspondlngly

numbered processors. The acceptance test checks that te error reporter was
Invoked In the previous subframe, and calls the alternate error reporter upon
detection of a discrepancy between err and errors.

Figure 2.1 Is a flow chart of the proposed error reporter acceptance test, and
flgure 2.2 is a Pascal listing of the procedure which has been developed and
tested. The test counts the number of non-dlsagreelng processors In a counter

deslgnated as f_LglLt and outvoted processors In a counter designated as _.
It then checks the number of disagreements and the operational status of every
processor designated as faulty. A Boolean variable to Invoke the alternate
error reporter Is set to TRUE If a working processor marked as faulty has fewer
than the threshold number of disagreements. The final segment adds _ and

_; if this sum does not equal the total number of processors, the acceptance
test will Invoke the alternate error reporter.

If the error reporter acceptance test does not detect any failures, It writes
the frame count in the 8 most significant bits of err. When the global

executive acceptance test checks these bits for the frame count, I? wlll verify
that the error reporter acceptance test has been executed In the current frame,
and that consequently, err reports are current. If a discrepancy between the
current frame and that encoded In the 8 most significant bits of err from a
particular processor Is encountered, the global executive sets a corresponding
bit In an Integer varlable called mismatch along with the frame count In the 8

most significant bits. The error reporter acceptance test w lll then Increment
errors in the appropriate position In the subsequent frame. Thus, failure to
execute the error reporter In the current frame will Increase the likelihood

that the processor will be retired by the alternate error reporter.

2.2. COVEPJ_GE OF 1TIE ERROR REPORTER ACCEFTANCE TEST

The error reporter acceptance test detects the following faults:

i_ O0 for all
processors

i
Increment

l

er tr I ncrelen¢ 1

_ y_ll Incrllent

"llfong I

no

J P_IHkqY FAILURE

_11e¢ _flltt"

ftae.

no

[IIVOKE ALTERNATE

rLog ERROR REPORTER

.o J

Figure 2.1. Flow ch=rt of Error Reportor Acceptance Test

5a

21800
21900
22000
22100
22200
22300
22400
22500

22600
22650

22700
22750

22775
22800

22900

23000

23100
23200
23300

23400

2343O

23460

23490

23495

23500

23600

23700
23800
23900

24000
24100
24200
24300

24400
24500
24600

24700
24800
24900
25000

25100
25900

PROCEDURE ACCEPTANCE_TEST;
(*error reporter acceptance test*)
VAR

EXCOUNT, WRONG,R I GHT,D I V I SOR, CHECK, I, J,MI SM: INTEGER;
FA I LFLG- BOOLEAN;

begin

end;

excount== mismatch dlv 256;

(*check execution count of global exec*)
If (framecount mod 256)<>(excount - 1) then erfalls:=true;

(*erfalls is a global variable which notifies
the system that the global exec has not run*)

mlsm:=mismatch dlv 256;

wrong:=O;
fallflg:=false;
rlght:=O;
dlvlsor:=t;
for J:=O to maxprocessors do (*check for omission errors*)

begin
mlsm:=mlsm div divisor

(*processor has 1 strike against It If
error reporter didn't run in prey. frame*)

If odd (mlsm) then errorsEJ] :=errors[J] +1;

if (errors[J]<threshold) and (workingEj])

then rlght:=rlght+l;
(*count for omlsslons test*)

check:=err dlv divisor;
(*shift err appropriate

no. of places to the right 4)

if odd(check) then begin
wrong==wrong+l; (*count for omissions test*)
if (errorsEJ]<threshold) and (working[J])
then failflg:=true (*check for false positives*)

end;
dlvlsor:=dlvlsor*2;

end;
If wrong+right<>maxprocessors +1 then fallflg:=true;

(*omissions test*)

if failflg then alt_error_reporter
else err:=err + 256 * (framecount mod 256);

Figure 2.2. Pascal listing of Error Reporter Acceptance Test

6

(1) failure to Invoke the error reporter during each frame

(2) failure to report processors with an excessive number of
disagreements as faulty to the global executive, and

(3) designation of a properly functioning processor as faulty

The validity of the Input to the test (e.g. fr_ount, working, and errors) is
not checked, and it Is possible that errors In these variables could be

propagated Into err. However, to a certain extent, these failures are covered
by other processor error reports in the global executive.

The primary consideration in the design of this acceptance test was that the
verification and failure detection be performed In a manner Independent of the

primary error reporter, the following subsections describe the means by which
the errors Ilsted above are detected.

2.2.1. Failure to Execute Durlng Each Frame

As noted above, the global executlve acceptance test checks the frame count mod
256 encoded In the front part of each error report. Consequences of the
failure to execute the error reporter on a given processor are I lmlted_ a
conslstent pattern of failures will be detected by means of the error reports of

other processors. Discrepancies will ultimately lead to the retiring of
processors which do not execute the error reporter. The present acceptance test
implementation calls for the retirement of the processor If any other
discrepancy from the system (I.e. voter) output occurs.

Just as the global executive checks execution of the error reporter, the
converse also occurs. If the frame count encoded In the front eight blts of

mismatch minus the frame count mod 256 is not equal to 1, then the global
executive acceptance test has not been executed In the previous frame, and the

system Is notifed. Failure to execute the global executive may result In more
serious consequences than failure to execute the error reporter, and the "one
count against you u strategy described In the previous paragraph Is not

appropriate.

2.2.2. Failure to Report Processors with an Excessive Number of
Disagreements to the Global Executive.

In order to achieve Independence from the primary error reporter algorithm, the
acceptance test checks for this failure Indirectly by testing for the following
conditions=

(a) the total number of processors reported as faulty is correct, and

(b) all processors designated as faulty have greater than the threshold

number of dlsagreements

In this acceptance test, the number of processors wlth less than the threshold
number of disagreements Is counted In a varlable designated as r_J_D_t, and the
number having excess dlsagreements are counted on a second counter labeld Jcr_OJ_.
If the sum of JcEQ_ and _ Is equal to the total number of processors, then
the error reporter can be shown to have performed correctly when the thlrd part
of the acceptance, test, described In the followlng'sectlon, has not detected any
failures. This acceptance test Is a particularly clear example of using
algorlthms which are orthogonal to the primary routine.

2.2.5. Designated a Properly Functioning Processor as Faulty

The final part of the acceptance test Is to ensure that all processors
designated as malfunctioning have at least the threshold number of
disagreements. This determination Is made by checking the number of
disagreements of these processors. If any values of the array are below the
threshold for worklng processors marked as faulty, then the prlmary error
reporter has failed, and the alternate Is Invoked.

2.3. ALTERNATE ERROR REPORTER

Independence In the structure and operation from the primary error reporter was
a chief obJective In the alternate routine design, in addition, Its output had
to be compatible with the global executive,

These requirements resulted In a routine which Is essentially the Inverse of the
primary error reporter. An alternate error word, designated as erra, Is
Initially set ot all lts; the alternate error reporter sets erra blts to 0 If
the number of dlsagreenents In the appropriate element of the errors array ls
less than the threshold. If there are more bits In erra than there are
processors (e.g. If there are six processors and elght blts In erra), the
leading bits are set to O. Finally, the primary error word, err, Is set equal
to err a, loaded with frame count Information, and placed in the pre-broadcast

buffer. The complementary nature of this routine Is malntalned In the order of

settlng the error word bits -- the processors are checked In ascending order
rather than the descending order used In the prlmary error report.Flgure 2.4.1s
a Pascal llstlng of the alternate error report.

2.4. IMPLEMENTATION REQUIREMENTS

As noted prevlously, the acceptance test and the alternate error reporter are
short and relatlvely slmple procedures which were wrltten to be compatible with

the SIFT operating system. Addltlonal local varlables are requlred as shGwn in

the listings for the error reporter acceptance test and alternate routine, in
addition, some modlflcatlons to the primary error reporter are necessary to

enable It to transmlt processor states to the global executive and executlon
Informatlon to the acceptance test. No changes In the broadcastlng protocol are

required.

8

set errs bits

to aLL 1's

OO for aLL

@
no

set Leading bits I

of errs to O. /

/

_ss

I Set appropriate

bit in errs _o
O.

Figure 2.3. Flow chart of Alternate Error Reporter

]9100
19200
19500
19400

19500
19600

19700

19800
19900
20000

20300
20400
20500

20600

20700
2O8O0

20900
21000

21100
21300

21400
21600

PROCEDURE ALT_ERROR_REPORTER;

(*thls Is the alterate error reporter*)

CONST

VAR

beg In

end;

ALLONES:377B;

ERRA:INTEGER;

I,K:INTEGER;

(*alternate error word*)

erra:=allones;
k:=1;

for I:=0 to maxprocessors do

begin
If (errors[l]<threshold) and (working[I])
then erraz=erra-k;

k:=k*2;

end;
erra:=erra - (allones - k + 1);
err==erra + 256*sfcount;
prebroadcast(errerr,err);

(*remove leading blts*)

Figure 2.4. Pascal listing of alternate error reporter

10

2.5. ERROR REPORTER RECOVERY BLOCK VALIDATION

The major objective of the testing performed on the error reporter recovery

block was to provide a comprehensive set of cases which would demonstrate

satlsfacto_performance when the error reporter was functioning properly and

when It had failed. Figure2.5shows the top level fault tree that was used to
deflne this set. The recovery block falls If the primary error reporter falls
without detection by the acceptance test, or If the alternate falls after belng
Invoked by the error reporter acceptance test. Failure due to an undetected

primary routine fault will occur when both the prlmary routine falls and the
acceptance test does not detect It. The same potential failures affect the
acceptance test and the alternate routine and thus, they were both validated

slmulataneously.

Figure 2,6 continues the development. There are two major classes of errors:
failure to Identify a processor with excess dlsagreementsp and reporting a

processor with less than two disagreements in the error report. Under the first
class of errors, one, two, or three processors could remain unidentified,

Further expansion of the tree shows that failure to Identify two outvoted
processors Is caused by fallure to Identify the first process and failure to
Identify the second. Slmllarly, failure to Identify three processors having

excess disagreements can be broken down into failure to Identify the first
processor and failure to Identify the second and failure to Identify the third.

Figure 2._ continues thls development. Any of the six processors could be
identlfled as the first fallure. Once the validatlon has established that the

error reporter acceptance test and alternate can correctly Identify the first
error committed by the primary routine (1.e. failure to Identify one processor
wlth an excess number of disagreements), validation for the condltion of two

outvoted processors can be performed by holding flxed the first processor with
excess dlsagreeements and only varying the second. Thus, processor 0 Is
assigned the flrst error, and processors 1 through five are each, In turn, given
an excess number of disagreements In the errors array. Similar logic applies to
the third and fourth processors with excess disagreements.

Figure 2.8 Is a further development of the fault tree which summarizes the
pattern in which the processors are tested. Transfer 1011 shows that all six
processors are tested for the case In which the primary error reporter falls to
detect one processor with excess disagreements. Transfer 1012 shows that when
two disagree excessively, the primary error reporter Is always assumed to have
dectected an excess disagreement condition In processor O, and that the
acceptance test and alternate are tested wlth the second error In processors 1

through 5. For failure of the primary error reporter to detect a third
excessively disagreeing processor, transfer 1013 shows that processors 0 and 1
are assumed to be the first two, and the third occurs In processor 2, 3, 4, or

5. Finally, for four errors, processors O, 1, and 2 are assumed to have excess
disagreements, and the final error varies between processors 3, 4, and 5.

The fault tree for the second class of errors, spurious Identification of

correctly functloninlng processors as having excessive disagreements is shown in
figures 2.8 and 2.9. Incorrect identification of a processor as malfunctioning
can occur when there are either no disagreements or a single disagreement.

11

Incorrect characterization of the processor can also occur when there are one,
two, or three other processors which actually have excessively disagreed with
the voter output. As previously, not all processors need to be considered. The
testing scheme In this case Is to ensure that the error reporter acceptance test
can detect a false failure of each processor when any other processor has
failed. Table 2.1 ls a list of the validation tests required to verify the
correctness of the error reporter acceptance test and alternate executive based
on the fault trees descrlbed here,

Complete test required simulation of a major portion of the SIFT operating
system. The simulation program, called DRIVER, prepares the errors and working
arrays of the voter and err word of the error reporter based on external Inputs.
It next Invokes the acceptance test, outputs results, and_vokes the alternate
If an error Is detected. Appendix A shows a complete listing of the program.

12

twl

n_cS_
W_

Lu

_q_LL

0_
llJ
I-

n WU.

@

i,

L.
0
0.

r_

L
L.

W

_411w

0

L

m
@
_P
_D

0.
0

I--

q_

N

_D
L.

C_
m
li

13

__

r_
L.

U.

S-

L.

r_

L
UJ

0

m

0

N

o
t.

[. 1

0 I_. I,,z. I.z.

0 0 0 0

,,,,,,°°"i,"
<a

D

• -- _ _ I _

,_z. 0 OI 0 0 0

I el n n Q. Q.

,._ _ .,.J ..J .J -J

o o _,1 _:0 0

W t_ W I _ _

n O- Q. I _.. J Q..j r_

,I I

• i!

l __o
O.

;A
t-
O

m

gO

L.

m
m

0

U

'4-

"0

L.

0
U

I--

m

_z
d
II1
L

15

,8

-/

_P
m

m

Lt.

UI

t,.

m

@

,r,-.

L_,

{0

'4,-

@

@
m

4.-

N
m

f,."

I,,.

"4-

L..

C

1,,.

m

16

TABULAR "ORe

PROCESSOR0
HAS EXCESS
DISAGREENENTS

PROCESSOR1
HAS EXCESS
DISAGREEI_IENTS

PROCESSOR2
HAS EXCESS
DISAGREEMENTS

PROCESSOR3
HAS EXCESS
DISAGREEIulENTS

PROCESSOR4
HAS EXCESS
DISAGREEMENTS

PROCESSOR5
HAS EXCESS
DISAGREE.MENTS

Figure 2.9. Final Development of Figure 2.8

1?

TABLE 2,1. FAULTS FOR WHICH VALIDATION TESTING IS REQUIRED
FOR THE ERRORREPORTERACCEPTANCETEST AND ALTERNATE ERRORREPORTER

Fault Tree
Designation

Description

1011

1012

1013

1014

1110A

1110B

1110C

1110[)

Failure to detect primary error reporter_s not
Identifying a single processor as having excess
disagreements

Failure to detect primary error reporterVs not
Identifying a second processor as having excess
disagreements given that the flrst has been Identi-
fied

Failure to detect primary error reporterWs not
Identifying a third processor as having excess
disagreements given that the first two have been
identified

Failure to detect primary error reporter's not
ldentlfying a fourth processor as having excess
disagreements given that the first two have been
Identified.

Failure to detect primary error reporterts false
ldentlflcatlon of a functlonal processor as havlng
excess disagreements given that no other processor
has failed.

As 1110A, given that 1 other processor failed.

As 1110A, glven that 2 other processors failed.

As 1110A, given that 3 other processors failed.

1111 Failure to detect primary error reporter's false
Identlflcatlon of a functional processor as having
excess disagreements given that one other processor
has failed.

18

SECTION]: GLOBAL EXECUTJYE

This section describes the acceptance test and alternate routine for the SIFT

global executive. The acceptance test is coded In two modules= the first,
which Is run before the primary routine, verifies that all Input to the global

executive Is current, and the second, which Is run after the primary global
executive, checks for correct execution. If execution errors are detected by
either module of the acceptance test, the alternate global executive is Invoked.

3,1. GLOBAL EXECUTIVE ACCEPTANCE TEST

The August, 1980 version of the SIFT operating system has the error reports for
the active processors contained In the array prevotererrerr,*] where err err Is a
constant set to 1. The error reports themselves are contained within the 8

least significant bits of each 16-bit element of prevote, and the frame count is
encoded In the 8 most significant bits by means of the error reporter acceptance
test. The global executive reads successive bits of each nrevote element by
shifting the word to the right. Because of thls destructive read, It Is

necessary to reproduce the error report Information prlor to execution of the
primary routine. This task Is performed by the flrst module of the global
executive acceptance test designated PREGEXECo PREGEXEC also checks on the
frame count which has been encoded by the error reporter acceptance test. After
execution of the primary global executive, the second module of the global
executive acceptance test, called GEXECTEST, Is executed. GEXECTEST checks each

position of each word In an order orthogonal to the primary global executive.
It then compares this result with the appropriate bit In RECONF, the retirement

word generated by the primary routine. If there ls a discrepancy, the alternate
global executive, ALTGEXEC, is called. ALTGEXEC Is described In section 3.

Figures 3.1 and 3.2 are flow charts of the two modules of the global executive
acceptance tests,and figure 3.3 contains the corresponding listings. The first
module of the acceptance test, PREGEXEC, checks the framecount contained in the
most significant 8 bits of each error report which have been writ-fen by the
error reporter acceptance test, and then recopies the least significant half of
the word Into the most slgnlflcant position In order to preserve them for the
second module of the global executive acceptance test.

Those error words containing frame counts different from that of the system are
set to zero as a means of masking them from the global executive, and a failure
counter for the processor error report Is Incremented. The subsequent execution
of the error reporter on other processors will count this Indicator as a
disagreement when writing their reports, an action which will result In
retirement of this processor If at least one other discrepancy Is detected.

Once the primary global executive has been run, the second module of the
acceptance test checks the correctness of Its execution, and Invokes the

alternate routine upon detection of an error. A major consideration In the
design of the acceptance test was that It be Independent of the primary routine.
Thus, whereas the primary checks each position of an error report before moving
on to the next, the acceptance test checks a given position of all error reports

19

DO FOR EACH
ERROR REPORT

I READ FRAMECOUNT

ENCODEDI N MOST
SIG, BITS OF
ERRORREPORT

REPRODUCEERROR I
REPORT FOR
ACCEP. TEST

SET APPROPRIATE
BIT IN mismatch
WORD

ZERO OUT ERROR
REPORT

Figure 3.1. Flow chart for PREGEXEC

20

TION OF ALL /

ERROR REPORTS /
,I

I
IDO FOR EACH

1
ADO THIS

POSITION (1/0) JTO TOTAL •

L

YES

YES

NOTIFY

SYSTEN

Flgure 3,2. Flow chart of Global Executive Acceptance Test

21

//I.

F

/ SET FAI L FLAG
NO

|

]

NO

YES

I SET FAIL FLAG

1

YES

CALL ALTERNATE
GLOBAL EXECUT l VE

Figure 3.2 (continued), Flow chart of Global Execuflve Accepfance Test

2?-

bgfor9 moving.up to.th.e next position..A.sec.pnd.dl.fference.b.e_een.th.e primary
g/ooaJ execuTmve ana Tne acceptance TeST mS The mack ot an mnTermeomaTe array
(i.e. j__Q_,_) for the storage of excess disagreements. Thus, once the number of
discrepancies In a given position has been counted, It Is Immediately compared
wlth the corresponding value In the reconfiguratlon word RECONF. If a
discrepancy Is detected, a flag is set that will result In the Invocation of the
a i ternate rout I he.

If a processor /ndlcated as retired In the working array Is Indicated as having
excess disagreements In the Input processor error reports, then one of three
conditions exists (1) a processor marked for retirement ls still a functioning
part of the system, (2) an error exists which affects the state of the_LQEklj_
array, or (3) the error report(s) Input to the global executlve are not valid.
Although the global executive can detect this discrepancy It cannot by Itself
Isolate which of these three conditions caused the anomaly. As a result, the
global executive acceptance test and alternate logic note the discrepancy to the
system, but disregard the error reports In preparation of the reconf word.

3.2. COVERAGEOF THE GLOBALEXECUTIVE ACCEPTANCETEST

The global executive acceptance test described above detects the following
faults:

(1) failure to Invoke the error reporter acceptance test

(2) failure to retire processors reported by at least two other processors
as having an excess number of disagreements with the voter result, and

(3) marking for retirement processors wh/ch do not have an excess number
of disagreements

Oetectlon of the first fault occurs In the first module of the global executlve
acceptance test PREGEXEC. Two probable causes of the dlscrepancy are: (I)
Incorrect executlon of the error reporter recovery block and (2) no Invocation
of the error reporter acceptance test. In elther case, Information reachlng the
global executive Is suspect, and should be dlsregardedo If the rest of the

system Is properly functlonlng, the only penalty for no retirement at thls point
would be the unnecessary overhead necessitated by the hlgher number of active
but not functional processors. Because the discrepancy Is a processor
disagreement from a majority vote, it should be counted In the total of the
error reports of the other processors. If any other single disagreement occurs,
the processor would be retired at the end of the next frame.

GEXECTEST detects both the second and third faults listed above. The number of

processor disagreements reglstered In each processor error report are counted;
retired or self-reporting processor disagreements are Ignored. If the
corresponding position in the reconfiguratlon word Is zero when there are two or
more reports which have bits set, or the reconflguratlon word has a blt set when
fewer than two (i.e. one or zero) processors are reported In the error words,
then a boolean variable fallflg Is set. The alternate global executive Is
Invoked If _3LIJ_tlg Is TRUE.

23

05600
05700
05800
05900
06000
06100
06200
06300
06400
06500
06600
06640

06680
06690
06700
06800
06900
07000
07100
07150
07175
07200
07225
07237
07250
07300
07800

PROCEDUREPREGEXEC;
(*This procedure copies the least significant bits of the
error reporter word bits into the most significant positions

after checking the frame number *)

VAR

beg !n

end;

excount=lNTEGER;
ERR=INTEGER;
J,M=INTEGERI

mlsmatch:=O; (*mismatch Is a global Integer
variable used for marking
procs, not running ertask*)

for J==O to maxprocessors do begin
excount:=prevote[errerr, J] dlv 256;
err==prevote[errerr, J] mod 256;
if excount=(framecount mod 256) then

prevote_errerr, J]==257*err
(*copy least slg. bits to most slg. position

If frame count OK*)
else mlsmatch==mlsmatch + 1;
(_otherwlse send word to error reporters in

frame*)
mismatch==mlsmatch * 2_

end_

subsequent

Figure 3.3, Listing for Global Executive Acceptance test; PREGEXEC

2_

I_000

11100

11200

11300

11400

11500

11600

11700

11800

11900

12000

12100

12200

12500

12540

12580

12420
12460
12500
12600

12700
12800
12900

13000

15100

15150

13160

13190

15191

15192

13193

13196

13200

13300

13400

13500
15550

13600

13700

13800

13900

14000

14100

14200

14250

14275
14300

PROCEDURE GEXECTEST;
(*Global Executive Acceptance test*)

TYPE

VAR

beg I n

ZERO_ON E=O.. I;

OIVISOR,CHECK, I,J,SUM:INTEGER;

FAILFLG:BOOLEAN;

LAST_IG:ZERO_ONE;

divisor:=1;

fallflg:=false;
for i:=0 to maxprocessors do begin

(*...do for each posltion of report*)

(*This procedure Is written under the assumption that the primary

global executive has rotated the error reports a total of 8
positions. If this is not the case, additional division by
(8 - 1 - maxprocessors)*2 for each error report is necessary *)

sum:=O;
for j:=O to maxprocessors do begin

(*...do for each error report*)

last_dlg:=(prevote[errerr,j] dlv dlvlsor)
mod 2;

If (not workingEJ]) or (l=j)

then lastdI_:=O;
if(not worklngLl]) and (odd(lastdlg))

then begin
recfaIl:=recfall+divlsor;

(*recfail Is a global Integer
showing a retired proc. working*)

lastdlg:=O;
end;

sum:=sum + last dig;
end;

check:=reconf dlv divisor;

if odd(check)
then begin

If(sum<2)and(worklng[l]) then faIIflg:=true
end

else If sum>=2 then fallflg:=true;
dlvlsor:=dlvlsor*2;

end;
if fallflg then altgexec
mismatch:=mlsmatch + 256*(framecount mod 256);

(*Indicate successful completion of acceptace test

to error reporters of next frame *)

end;

Figure 3.3 (continued). Listing of Global Executive Acceptance Test: GEXECTEST.

z5

3.3. ALTERNATE GLOBAL EXECUTIVE

The alternate global executlve, ALTGEXEC performs a function Identical to the
primary routine, but In an Independent manner. The flow chart and listing for
this procedure are shown In figures 3.4 and 3.5. Input to the alternate routine
Is the same as that used by the acceptance test: l.e. the error reports

replicated by PREGEXEC. Unlike the primary routine, ALTGEXEC sums the totals of
the disagreeing processors In descending order, and stores these totals In an
Integer array. If the totals In this array are less than two, then a zero Is
placed In the corresponding position of an alternate reconflguratlon word,
reconfa. Otherwise, the posltlon Is set to 1. A second difference between the
primary and alternate is that the error words are not destructively read, and
can be saved by the system If desired. As a final step of execution, ALTGEXEC
sets the value of the primary reconflguratlon word to that of the alternate.

The primary reconflguratlon word value can also be saved prior to execution of
thls step.

3.4. IMPLEMENTATION REQUIREMENTS

Three new procedures: GEXECTEST, PREGEXEC, AND ALTGEXEC are requlred for the
operating system. PREGEXEC must be Invoked prior to the execution of the
primary global executive (GEXECTASK), and GEXECTEST Is executed at Its
completion. This latter routine will Invoke procedure ALTGEXEC, the alternate

global executive, if required. Although the routines are presently declared as
procedures, they may be changed to functions in order to be compatible with the
form of GEXECTASK.

An additional global Integer variable, called mismatch, ls required. Frame

count disceprancles detected in the PREGEXEC routine are recorded In a manner
similar to processor error reports, i.e. by placing a "1" in the appropriate
position of the word. The error reporters of other processor will read mlsmatch
and increment the error counter for the appropriate processor If PREGEXEC

reports a frame count disagreement.

A second global Integer variable designated as recfall Is used to enable the
global executive to Indicate the unsuccessful retirement of a failed processor.
As Is the case with mismatch, the faulty processor Is noted by a "1" In the

appropriate position. As noted previously, the global executive Is not capable
of determinlng whether the processor actual ly did not respond to the
reconflguration order for retirement or whether the "working" array is Incorrect
and thus, no further action can be taken by the global executive.

Changes In the values of each element of the _ [errerr,*] array will occur
due to the Implementatlon of the fault-tolerant error reporter and global
executive. As noted previously, PREGEXEC requires the frame count be encoded in
the first half of the error report from each processor by the error reporter

recovery block. In addition, the least significant bits of the error reports
are replicated In the most signlficant posltlons by PREGEXEC. It Is not
antlclpated that these changes have any Impact on the rest of the SIFT
executive.

26

ZERO COUNTING
ERROR COUNTING

ARRAY

_T
i

I

I DO FOR ALL

WORKING PROCS, ;
0ESCF..HDI NG

ORDER

' i

I DO F0R EAC:H

ERROR RE:I_RT

POSITION3 DES-
CENDING ORDER

YES

Lu__,N_ o,v,ol
OIVIDE TO TEST IFI
BIT IN THIS POSI-]

TION SET TO I _._

@,o

Figure 3.4. Flow chart of the AI,erna,e Global Executive

27

EACH POSIT ION OF

_1 YES , NO

SET THIS POSI-
TION OF
TO 1

NO

DONE?

END

Figure 3.4. (CONTINUED). Flow chart for ALTGEXEC.

28

08000
08100
08200
08250
08300
08400
08500
08550
08600
08700
08800
08900
09000
09100
09150

09200
09)00
09400
09500

09550
09700
09800
09850
09900
10000
10100

10200
10300
10400
10500
10600
10800

PROCEDUREALTGEXEC;
(*This Is the alternate global executive*)

const
VAR

beg I n

end

maxdlv=32;

RECONFA,DlVlSOR,MULTpJ,K,LpM:INTEGER;
ERCOUNT=PROCINT;
LAST=INTEGER_

for J==O to maxprocessors do ercount[j]==O;
(*...initialize ercoun@*)

FOR J== maxprocessors downto 0 do
If worklngEJ] then begin

(*...do for each error reporl _]
dlvlsor:=maxdlv;
for k:=maxprocessors downto 0 do begin

(*,..do for each position of report*)
if j=k then last==O
else last==prevote[errerr, j] dlv divisor;

If odd(last) then ercount[k]==ercount[k]+l;
dlvlsor==dlvlsor dlv 2_

end;
end

(*,..now write reconfa W)
reconfa :=0;
mult==l;
for I==0 to maxprocessors do begin

If ercount[I]>=2 then reconfa:=reconfa+mult;"
mult==mul_2;

end;
pre_broadcast(gexecreconftreconfa);

Figure 3.5. Listing of Alternate Global Executive

29

3.5. VALIDATION

The critical nature of the global executlve acceptance test and the alternate

global executive necessitates a comprehensive set of valldatlon tests In order

to demonstrate that the Incorporation of these routines into the SIFT executive

system do not negatively Impact the overall reliability.

An exhaustive set of tests would Involve testing each bit of each error report
for the appropriate response for every possible configuration of all other error
bits, the configuration of the working array, and the configuration of the
reconf word. For six processors, there are a total of 281 trillion states of
these variables, a rather Intimidating number. However, the need for

comprehenlve testing remains. Thus, a major portion of the testing effort was
devoted to the choice of an approprlate subset of these variables that would

conclusively demonstrate that the global executive recovery block does not
contain errors.

A fault-tree methodology was used ?o reduce the number of tests to a manageable

number. The objective was to develop the trees to a sufficient level such that
the primal events, i.e. those at the bottom of the tree, could be tested by a
reasonable number of cases. If this testing showed that an Insufficient number
of prlmal events existed to make the top event (Failure of the global executive)
true, then the validation would be complete.

The highest level tree Is shown In figure 3.6. The top event, failure of the
global executive recovery block, can be caused by either (1) a failure In the
primary global executive and failure of the acceptance test to detect the
failure or (2) the acceptance test Invoking the alternate routine and failure of
the alternate routine. For the purpose of this analysls, failure of the primary
routine is a given, and thus, failures of the acceptance test and the alternate
must be considered. However, because these routines function together as one
unlt, they are tested together in the validation procedure. I_oreover, they both
perform the same operation, I.e. determining the number of valid Indications to
dlscard a processor, and thus, are subject to the same types of faults. Hence,

subsequent levels of development of these fault trees apply to both routines.

The next level of development shows the potential failed states of the
acceptance test and the alternate global executive, which, as noted above, are
the same. Two general classes of these possible failures exist= failure to
Identlfy a faulty processor (i.e° one where ?here are a sufficient number of
agreeing error reports) in the reconf word, and failure to detect a "false
positive" (I.e. the marking of a processor for retirement without the required
number of agreeing error reports).

Figure 3.7 Is the tree for the first class of failures: one, two or three faulty
processors remaining unldentlfled. Validation test 1010 will test the software
for each possible state of the error reports which would Indlcate a single
processor as havlng failed. A large reduction in the number of states of the
error reporter words can be achieved by consideration of the crlterla for
retirement: In order for a processor to be retired, the error reports of two

other processors must Indicate if had more than 2 disagreements from the maJoriTy
in the previous frame. Thus, if the recovery block can be shown to detect any

two working processors Indicating a thlrd processor as having failed then it

3O

will designate this failure if more than two processors so report.

As Is shown in figure 3.8, failure to Identify a single faulty processor may
occur when O, 1, 2, or 3 processors have been retlred by the reconfiguration

task. Considering all permutations of the SIFT configuration would lead to an
Impractical number of test cases, and the following logic describes the
reduction In the validation process: there Is only I SIFT configuration when
all processors are working, and slx possible configurations If a single
processor Is retired. These configurations are tested with all permutations of
two processors Indicating a third as faulty. Once the validations has establish

that the global executive can correctly Identify a failed processor with any
single processor configured out of the system, validations for two processors
configured out need only consider cases where the flrst retirement Is held fixed
(at processor O) and the second Is varied among the remaining 5. A similar line

of reasoning can be used to consider three retired processors. Flgure 3.9 shows
the pattern of SIFT configurations that are tested for the single faulty

processor case.

The next errors covered In this branch are the failure to Identify two and three
processors as having failed. In principle an exhaustive test should cover each
posslbility of two or three processors having failed. However, as Implied In
the fault tree, this can be broken Into the failure to detect the first faulty
processor, failure to detect the second, and failure to detect the third (if
applicable). The failure to detect the first processor when no other processors
have failed has been covered In test 1010A, along with arguments which extend

the validity of this test to all states of worklna and reconf. This same
argument can be easily extended to cover the case of more than one processor
having failed.

Tab1e 3.] Illustrates the validation tests required to cover all failure
possibilities under the tree tO00. The validation procedure calls for processor

0 to be designated as faulty by processors 1 and 2, and that processors 1 though
5 be tested In turn In a manner similar to the single processor failed
validation described above. An analagous line of reasoning can be used for the
validation of the third processor failed case: processors 0 and 2 designate
processor I as failed, processors 1 and 2 designate 0 as failed, and the third
processor can be designated from the remaining processors (2 through 5). Table
3.1 lists this procedure explicitly.

Figure 3. i0 shows the development of the class of errors concerned with
designation of a functional processor as faulty. The possible failures
resulting In a spurious processor failure Indication Include counting the error
report of a processor which Is not working as part of the total disagreement

count, counting a processor's vote on Itself, or the deslgnatlon of a functional ,
processor on the basis of | or no other processor error reports. These failures
wlll be tested In tests designated as 1100A, 1100B, 1100C, and llOOD. A
reduction in the number of tests to be performed occurs by the fact that these
failures will take place for any value of reconf. Also, because the global
execui)ve acceptance test and alternate operate in the same statement sequence

regardless of the SIFT state (I.e. there Is no branching to different modules of
the code depending on the values of worklna, reconf, or the failure of a
particular processor), the same tests apply to all values of workiBg.

Table 3°2 shows the list of validation tests and the range of working, reconf,

3Z

and error reports. Tests 1100A and 1100B can be executed simultaneously with
test tO00A. Test 1100C is executed by placing a single bit In all 36 possible

error reporter positions, setting the corresponding position In recoNt, and
determining that both the acceptance test detects the error and the alternate
routine functTons correctly. Test 1100D is performed by setting each bit of
reconf to 1 with no blts set In the error reporter words.

32

..J

U.

tJJ

o

W

--LIJ

LIJ U.I
XX
I,IUJ

.J_--
'_0

,.J

I--

_,.'5

L! ,...J ..1

o..
¢.._W

F

...J.J

OLd.

C
0

m
m

m
+-

X
_J

(._

M_

L.
I--"

U.

>

..J

0

m

33

.- _ :l 1._I

i

I]

_ l

i,i

1 _ _ _ _

rl_

! I____

, m

1 _ _ _

IL

m

u

lO

@

m

I.

m

l.ll

34

I

L l_,_

-- Z -- I

I.

m

n3
t.l_

m

'4-
U
_P
4-

{P

m

4-

(.)
_P

(0

_P

m

1,1.

35

D

Q _ _ _I

r-,l

_t

_ _ I _l _I _I _I

_: _I _I

u

@

m

t_

Ill

_ _ _-,

I_. _ _ __ -
I

''I

36

o,) t'-_ _ /./) /"_

o
n."

._1

I'--

i,

--i

r'-
0
U

L
--I
O7

IL

0

1/I

r_
X

U.I

U

I,I.

37

!

I-.

w
c_,J
m m

,_1

0 (,r) ¢J'l

a
LLI 1.1.1
r_" I---

I-- C_ C.,_ V)

c_
LAJ_-

(j.)

I-

(!) n_
crj c,_

0

ILl

L.
0
C_

L.
n

i,
0

0

-,Jl
I.I-

0

t-
O

4-

(_
m

-4-
C=

L.
.-!

¢)
L.

O)

ii

38

Table 5.1. Val ldatlon Tests for Global Executive Faulty Processor Oectectlon
Fa I Iure

TEST ERROR DESCR. work I ng prevote reconf NOTE

IOOOA 1 FAILED PROC. 0,1,2,3 not I reported 0 retiring 1

UNDETECTED BY work I ng (1st I nd I cated
PRIMARY by any 2 other

error reports)

IO00B 2 FAILED PROC, 0 not working
UNDETECTED BY
PR IMARY

2 reported
(2nd Indicated

by any 2 other
error reports)

1 retiring
(1st In any

posltlon of
reconf)

2

1000C 3 FAILED PROC. 0 not working
UNDETECTED BY
PR I MARY

3 reported
(3rd Indicated

by any 2 other
error reports)

2 retiring
(2nd In any

position of
reconf)

NOTES:

1. Failure of the primary global executive for this condltlon Is manlfq_ted by
both the following conditions= (1) one processor is Identified as having excess
disagreements by the Individual error reports, and (2) the primary global
executive did not mark this processor for retirement In the reconf word. This
validation test Is performed with 0_1,2,3 processors not working In order to

Jetermine whether the acceptance test and alternate are capable of detecting a
single (or the flrst In the case of multiple) processor failure given any SIFT
state. If any more then three processors are not worklng_ the entire computer
falls.

2. Failure of the primary global executive for this condition Ismanifestedby

the following conditions= (1) two processors are Identified as having excess
disagreements by the error reports, (2] the primary global executive marked the
flrst processor for retirement in re c on f, and (3) the primary global executive
did not mark the second processor for retlremento Validation testing for
detection of the first processor given any conflguration of _ with O, 1p

or 2 processors out and no processors marked for retirement has already been
performed In ICOOA.Thus, this validation need only establish that the acceptance
test can detect a second processor as having failed when the primary has
marked only a slngle processor for retirement In _.

3. Failure of the primary global executive for this condition ls manfested by
the following conditlons: (1) three processors are Identified as having excess

disagreements by the error repots, (2) the primary global executive marked the
first two processors for retirement in reconf, and (3) the primary global
executive did not mark the thlrd processor for retirement. Valldatlon testing
for detection of the first processor glven any conflguratlon of ¢Of_E/J_ wlth O,

1, or 2 processors out and no processors marked for retirement has already been
performed InlOOOA. Validation of the abllll_/ of the acceptance test to detect
the second processor failure has been performed lnlOOOB.Thusp this validation
need only establlsh that the acceptance test can detect a third processor as

39

having failed when the primary has marked only two processors for
retlrenent In reconf,

40

Table 3.2. Validation Tests for Incorrect Retirement Errors of
Global Executive

TEST

llOOA

1100B

1100C

11000

ERRORDESCR. working prevote reconf

PROCo RETIRED 0_1,2,3 not I other proc.
ON BASIS OF working reporting
SELF DIAGNOSIS (any position)

PROC. RETIRED
ON BASIS OF
NOT WOlfING
PROC. REPORT

PROC. RETIRED
ON BASIS OF
ONLY 1 ERROR
REPORT

PROC. RETIRED
ON BASIS OF
NO ERROR
REPORTS

1 not working

0 not working

O not working

1 other proc°
reporting
(any position)

I other proc.
reporting
(any position)

no other pro¢.
reporting

1 proc. marked
for retirement
(any position)

I proc. marked
for retirement

(any position)

1 pr_. marked
for retirement
(any position)

1 proc. marked
for retirement
(any position)

41

APPENDIX A. ERROR REPORTER DRIVER ROUTINES

Although both the error reporter acceptance test and the alternate routlne are
relatively brief procedures, a complete test required the simulation of a major
portion of the SIFT operatlng system. The slmulatlon program, called DRIVER,

prepares the errors and worklna arrays of the voter and the err word output of
the error reporter based on externally input data. It next Invokes the

acceptance test, outputs its results to file TTY (for diagnostic purposes), and
Invokes the procedure if an error Is detected. A complete Iistlng of the

program follows this description.

Figure A.I is a helrachical representation of the program organization. The
main program first Invokes procedure IOFILES which either opens a previously
written test data Input file, prepares to write a new file, or simply accepts
Input and outputs directly to file TTY. Each of the subsequent procedures
contain branches for the data source and destination defined in this routine.

The main program the Invokes procedure LIMREP, which determines the number of
Iterations (i.e. frames). FRAME COUNTER, the next procedure Invoked, sets the

value of framecount against which excoun?, the internal counter of the error
reporter, is compared. The program then invokes the VOTER and ERROR REPORTER

procedures which, on the basls of input data, prepare the worklna and errors
arrays and the err and excount variables. The ACCEPTANCE TEST procedure is then

run, and the alternate error reporter is called by It In the event of the
discrepancies dlscussed above. Subsequent iterations repeat the process from
FRAME COUNTER through ACCEPTANCE TEST until the repetition limit Is reached.

Upon exiting the loop, the main program invokes procedure which closes any of
the files opened In IOFILES and ends the simulation.

It should be noted that the actual error reporter acceptance test and alternate
error reporter which were tested are shown in this listing, and that they are
not identical to those shown in flgures 2.2 and 2.3. These latter Ilstlng were
changed #o be compatible with the SIFT operating system (by Including a
Dre_roodcast(errerr.err) statement) and eliminating display related statements
(e.g. outputs to TTY and the BINPARS routine which represented the error words

as binary numbers). An additional aiteration was made to the acceptance test
routine to Include testing of the mismatch variable. None of these changes are

sufficiently slgniflcant to warrant additional valldation testing.

Appendix C contains a sample output from this driver routine.

42

_0

o

H

-I

I_10'

42a

__-----]
, I

I!:
UJ

|

0
L.

I:L

0

0

m
N

oi

L

.r,-
L/.

00100
00200

00300
00400

00500

OO60O

00700
0C600

OO9OO
0 1000

01_0

01300

01300
01400

015 O0

016 O0

OWOO

018 O0

019 O0
0 2000
02100
02200

023O0
02400

02500
0 2600

02700
02BOO

O29OO

03O00

Q 3100

032O0

O33OO

0 3400

0 3500
0 36oo
03700

03750

03800

O39OO
o 4000

04100
0 420 0

o_30 o
0 4400

0 4500
04600
0 4700
0_00

OqgO0

050 O0

05100

05200
05300

05400

05500
0 560 3

0570 0
058O0

0 5cjO0

] 61300

PR OGR AM
C ONST

TYPE

VA R

(I

(.t

DRIVE R:

(=the following declarations are taken from
the AUGUST. 1980 VERX_rON OF THE SIFT

OPERATING SYSTEM *)

MAX PR OCESSORS=5;

MAX frame= 50 ;

T H RESH CL D=2 ;

PRCCES_3R=O..M_(PROCESS3RS;

PROCI NT:A RRAY[PROCESSOR] OF INTEGER;

PROCEO OL=ARRI_[PROCESSOR] OF BOOLEAN;

ERR:I NT EG ER;

ERRORS:PROCI NT;
R EP ORT: PROCI NT;

WO_ ING:PROCBO OL;

f rame coun t: IN T_,E R;

the fol]owir_ declarations are neoessary

the error reporter recovery block *)
ERFAI L5 :int_er;

fo P

the followin_ var_les are necessry only

for the driver preedures*)

I,J,K:INTEGE%

RPTL_ :INTEGER;
FILEN_ :PACKED ARRAY[I..8] OF CHAR;

TITLE : PACKED A RRAY[I..40] OF CHAR;

FIL:INT_ER;

INTREP :PROCINT;

PR OC ED LR E I OFILE S;

(tthis program sets up files for both input and outpU_

as deterlned by FIL input from the keyboard t)

begin

end;

wrlteln(tty,'Test of Error Reporter Recovery Block');

writeln(tty,'I/O options: try alone(O), input file(1)');

writeln(tty,'Create File(2) ');

r ead(t ty ,fil) ;

if fLl>O then benin

writeln(tty ,'enter filename');
readln(t ty);

readln(t ty ,filename) ;

if fil:1 then reset(input, filename)

else rewrlte(output, filename);

writeln(tty,filename.' ready');
end

else writeln(tty,'I/O through terminal only');

PR OCED UR E L IMREP ;
("SET REPETITION LIMIT FOR MAN

b egi n
if

PR OC ED L_ E*)

fil<>1 then be¢in (*promDts for TY inpc%-)

writeln(t ty);

writeln(tty,'enter number of repetitions');

read(t ty # ptlim);

if fil=2 then writeln(output,rptlim);

end

else be_in

read(input, rptlim);

43

06100

06200

O63 O0
06400
O65OO

O66OO

0670 0
06800

O69OO

070 O0
07100
O72OO

O73 O0
07400

2);

07500
07600
07iD0

078O0

07900
080 O0
08100

O8200

083O0
O84OO
085O0
08 6O 0
08700

O88OO
O885O

08900
O9O O0
091 O0

09200

O93 O0

094 O0

095 O0
O96OO
09700

09O30
O99OO
I0 o0o

10100

1020 0

1030 0
10 400

1 0500
10600

1070 0
1080 0

1 09 O0
I !000
! 110 0

! 1200

1 1300
I 14o0

1 1500
1 16o0

I 1700
1 1800

! .1900
12000

end;

e nd;

writeln(tty _ ptllm,

r ptlim ::r ptl lm- I ;

' repetitions')

PROCED UR E VOTER;

('this procedure is to mansullv ir_ut hhe
array generated in the voter routine W)

error[p[i]]

b egln
if fil<>l then be_in (rot ty ipU_*)

writeln(tty,'procedure voter -- enter errors');

for i::O to maxprocessors do begin

writeln(tty,'number of ermors for pro,_ssor '

end
end
else

for

read(tty,errors[i]);

wrlteln(tty,'working? (II0) ?');

read(tty,intreo[l]);

writeln(tty);
if fil:2 then write(output, errors[i] ,Intrep[!]);

i::0 to mxprocessors do (*flle inDut*)

read(input,errors[i] ,intrep[i]);

for i::0 to maxDrocessors do (*all*)

if intreD[i]<1 then working[i] ::false

else work irg[i] ::t rue;

end;
PROCED _ E BINPA RS(VAR NLM :INT_ER);

(*procedure to represent an integer as a 16 bit

Far

binr: array[O..15] of integer;

tn_m :integer;

divi s,i.J :Integer;
byte: packed array[1..20] of char;,

begin
dlvlm :32768;

if num>65535 then be_in

writeln(tty,'overflow');
num:=num rood 65535;

end;

t num ::num;

j::O;
for 1::15 d_nto 0 do begin

i f tnum div divls>=1 t hen begin

t num :=t num rood dlvis;

binr[i] :: I

e nd

else blnr[i]::O;

divi s: =d ivis div 2 ;

J::J+l ;
if blnr[i] :I then byte[J]::

else byte[j]:: '0';

if (i rood 4:0) then be_in

j::j÷1 ;
bvte[J]:: ' ';

end;

e nd;
writeln(t ty,byte) ;

writeln(t ty) ;
44

'I'

string *)

12100
12200
12300
12400
125O0
12600
12700
12800
12900
1 30 O0
1 3100

1320 0
133_0
1 3400

1 3500

135 50
136 oo

13700

13800

13900
14000

14100

1 4200

14300

14400

14500
1 4600

14800

1 4900

15 000

15100
1 5200

15300

1 5400

1 5500
1 5600

1570 0
1 5800

1590 0

1 6000

16100

16200

16300
16 40 0

16 500
1 6600

16 70 0
1 6800

16 90 0

1 7000

17100

17200

17300

17 400

17 500

17 600

1770 0

1 7800

17900

18000

end;

procedure error_reporter;

(*this procedure is to manually

array assumed to be generayted

Input the reoort[p[i]]

by the error reporter*)

VA R EXCOUNT:I NTEGER;

b egln
i f fil<>1 then begin

wr iteln(t ty) ;

writeln(t ty,'framecount

r ead(t ty @ xcount);

end

else

end;

(*t ty input*)

(minitialize the frame count *)

is',frmmeccunt:2,' enter execution');

(*error reporter would be incrementAug

its own frae counter here *)

writeln(tty,'title');

readln(t ty) ;

readln(tty,tit& e);

writeln(tty);

if f_I=2 then write(output, exccunt, tltl e);

wrlteln(tty,'procedure erro- repoter -- enter

err:-- 0 ;

for i:: maxprocessors downto 0 do b_in

writeln(tty,'proc' ,i:2,' err rpt.(I/O)

read(tty_eport[i]);

e rr:=e rr*2 ;

if (not worki_[i]) or (report[i] >0)

then err:=err+1 ;

if fil=2 then wrlte(output,report[i])

end;

writeln(tty);

err:=err ÷ 256mexccunt; (*combine

if fil:2 then write(output, err);

report');

=');

error and execution ct *)

,)
begin

(*file inout

read(input, excount, title);
for i:=m_xorocessors downto 0 do

read(input.report[i]);

read(input, err)

writeln(t ty) ;
wr iteln(t ty ,title);

writeln(tty,'frame no. ' , frsmeccunt:3,'executlon' ,excount:3);

writeln(tty) ;

writeln(tty,'processor':15,'voter error' :20,'error report':20,

'working' :20) ;
for i:=O to maxoroc_ssors do begin

wrlteln(t ty) ;

writeln(tty,i: I O, errors[i] :20, report[i] :20,

intrep[i] :20) ;

end;

writeln(tty);

writeln(tty ,'primary error word= ',err:5);

b inpars (err) ;

end;

PR OCED UR E F RAME_C OUNTER;

(*This procedure is to simulate the execution counter on the

error reporter acceptance test by means of manual input *)

b egi n

45

I 81 O0

18200

18300
18400

18 5OO

18600

18700

18 bOO

189O0

19000

191 O0

19200

19300

19400

1 9500

19 60 0

1 9700

19800

19 90 0

20 000

20100

2020 0

2030 0

20400

2050 0

20600

20700

208OO

209 0 0

210 O0

21100

2 1200

21300
2 1400

21500

2 1600

2 1700

2 1800

219OO
22000

22100
2 220 0

2 230 0
2 2400

22500

226O0

22700
228 O0

22900
23O O0

2310 0

2 320 0

23330

23400

23500

23600

2_00

23800

23900

2 4000
Io

end;
frame ccu nt:=f ram- e curt t+ I ;

PR OC ED L_ E CLOS_ILES;
(*Close the input or outptt files if necessry 6)

b egin

if fil:1 then close(input);

i f fil:2 then close (output);

end;

PR OCED UR E AL T_E RROR_r eportE R;

(*this is the. alter'ate error reporter*)

C ONST

VAR
AL LO_ S=377B ;

ERRA:I NTEGER;

I,K: INT_E R;

(*a t ernate error woraW)

begin

end;

writeln(tty);

writeln(tty ,'alterate error reporter invoked');

erra: =allones;

k:=1;

for i:=O to maxDrooessors do

begin

i f (errors[i] <threshold)

t hen erra:--erra-k;

k:=k*2 ;

end;

erra:=erra- (allones - k + I);

writeln(tty,'alternate error word='

err:-erra + 25_frameccunt;

b Inpars (err) ;

wr iteln(t ty)

and (wo_in_l])

(tremor, leading

,erra:5);

bi ts *)

PROCED _ E A C_PTANCE_TEST:

('error reporter accetance test*)

VAR

EXC OUtIT. WR O N_ , RIG_ T. D IV I SOR, CH _CK, I. J : IN TEG ER;

F AI LFLG: B30LE AN ;

begin

excount:: err div 256;

err::err mod 256;

if exccunt=frsmecount then begin

wrong:=O ;

f ailflg:=f alse;

right:=O;

divi sot:=1 ;

for J:=O to maxnrocessors do

begin

i f (errors[j] <t hr eshold)

then ri_ht:=r [ght+1 ;

check:=err div divisor;

46

(*check for omission errors')

and (working[J])

('count for omissions test-)

('shift err appropriate

no. o f pl aces to _ he ri._._"

p24100:30000
24100
24200

24300
24400

)
24500
24600

24700

24800

24900

25000

25100

25200 end

25300

25400

25500

25600

2570 0

2580 0

2590 0 end;
26 000

261 0 0

26200

26300 BEGIN
264O0

26 500

26600

26700

26800

2690 0

27000

271 O0

27200

273OO END.
i

if odd(check) then begin

wrong:=wrong+1; (*count for omission.q t_st*)

if (errors[J] <threshold) and (working[J])

then failflg:=true (*check for false positives*

end;
d ivi sor:=d ivi so ra2 ;

end;

if wrorg+right<>maxprocessors +I then failflg:=true;
(*omissions test*)

if faKflg then alt_error reporter
else wrlteln(tty,'error reporter OK');

error reporter did not run');

else be_in

wr i teln(t ty) ;

writeln(tty,'pr_mary

alt error_reporter;

writeln(tty);

end;

(*MAIN PROCED L_ E*)

f rsme_C OUNTER;

VO T ER ;

ERROR REPORTER;

A CC_ TANC E_T EST:

I OFI LE S;

L IM R_P ;

REPEAT

UNTIL f rsme ccu n t>R PT LIM;

CL OSEFI LE S;

48

APPENDIX B. GLOBAL EXECUTIVE DRIVER ROUTINES

A significantly larger set of test cases was necessary for the global executive
validation, and thus, its driver routine, GEXEC, used flle Input exclusively for

the validation test Input data. Two routines were used to Input test data=
INGEX, which accepted data directly from a terminal for generation of a small
number of test cases, and MVTEST, which had an Internal procedure for generation
of a larger number of cases.

Program INGEX consists of 5 procedures= BtNPARS, which represents Integers as
16-blt binary numbers, CONY, which converts the input error reports and retiring
processors into Integers (err and reconf) used by the global executive, PRELIM,
whlch opens a file for the test cases, OUTFILE, which writes the data to the
file, and INDATA, which Issues prompts to file TTY and processes the resultant

input. The program first opens a file with procedure PRELIM, and then accepts
Input and writes to the file until the user specified number of test cases has
been reached, and then saves the file for use by GEXEC.

MVTEST Is composed of 4 procedures: ZERO, which zeros out the error reporter
representation array for a new case, MVINIT which Initializes an array
containing all possible test cases for a given number of faulty processors,
DISP, which performs additional processing and writes the cases to an output
file, and MATCH, which selects a single test case from the possibilities

generated by MV. Modifications to the main procedure, MATCH, and DISP were made
for the generation of test cases for varlous conflguratlons of the system (I.e.
values of working) and number of processors becoming faulty In the current frame
as described In section 3.5.

Program GEXEC contains 7 procedures: BINPARS, which was described above,
PREGEXEC, the first module of the global executive acceptance test, ALTGEXEC,

the alternate global executive, GEXECTEST, the second (and main) module of the
acceptance test, INFILE, whlch reads flies created by either INGEX or MVTEST,
and PRELIM, which opens the flies used by GEXEC. After PRELIM opens a file, the
program flow ls from INDATA, which prepares the Input for the acceptance tests
and alternate routine (if necessary), to PREGEXEC, GEXECTEST, and ALTGEXEC (if
Invoked by GEXECTEST). This sequence Is repeated until the end of file
condition ls reached.

A modification of GEXEC, designated VALGEX, was used for creating a more terse
output. This was necessltated by the large number of test cases (almost two
thousand).

As was the case with the error reporter, modifications of the PREGEXEC,

GEXECTEST, and ALTGEXEC procedures were made to remove all TTY I/0, make the

output of the routlnes compatible with the SIFT operatlng system, and to Include
references to the mismatch variable descrlbed In sec_rlons 2 and 3. These minor

alterations are not expected to affect the correctness of the routines as

established by this validation.

Llstlngs of INGEX, MVTEST, and GEXEC follow this description, and the output of

GEXEC is descrlbed in Appendix C.

49

PROGRAMINGEX

50

00100

0020 0

0030 o
00400

0 050 0
00600

0O700
00800

00900

01000

01100

01toO

0 130O

01400

01500
016 O0

01700
018 O0

O19OO
02000

02100

02_0

023O0

02400
02500

02600

02700
O2BO0

02900

0 3O00

0 310 0
03200

O33OO

O 3400

0_00

036 O0

0 370O

03800

O_gO0
0 40 O0

04100

0 420 0

04300
04400

0 450 0

04600

04700
O48OO

04900

o 5000

05100

05200

0 5300
05400

055O0

0 560 0

0 5700

0580 0

PROGR AM IN_X ;

CONST

TY PE

VA R

maxp roces sn rs = 5 ;

p roces so r- O..m axp r ocesso rs ;

procint=array[processor] of integer;

FILE_ : PA(KED ARRAY[I..8] OF CHAR;

CASENAME : PA(KED ARRAY[I..401 OF CHAR;

C ASEN O,MAXC ASE, FRAMECO UNT: I NT EG ER;

N HM R EC. N UMO UT. N HM PR OC ,R EP R OC , F AU LTPROC ,

NHMFAULT, PROCRET,PROCOD_ :PROCESS3R;

TVE C ,I NTREP ,RETIR ING: PR OCI NT;
ERRORS:AR RAY[PROCESSOR] OF PROCINT;

PROCED UR E BINPA RS(VAR NUM :INT_ER);

(*procedure to represent an integer as a

var

binr: array[O..15] of integer;

t num :integer;

d ivi s,i. J :integer;

b egi n

16 bit

byte: packed array[1..20] of char;

divim =32768;
if num>65535 then be_in

writeln(tty,'overflc_');
num:=num rood 65535;

end;

t hum :=hum ;

J:=O;
for i:=15 downto 0 do be:in

if tnum div dlvis>=1 then be_in

t num:=tnum rood divis;

binr[i]:=1
end

else hint[i] :=0;

divls::divi s div 2;

J:=J÷1 ;
if binr[i] =I then byte[J]:= 'I'

else byte[J]:= '0';

if(i

end;

end;
wr i t eln (t ty) ;

rood 4=0) then begin

J:=J÷1 ;

bvte[J] := ' ';

wr iteln(t ty _yte) ;

wr i teln(t ty) ;

end;

FUNCTION CONV(AR_Y :PROCINT): INTEGE_

VAR l,J, k:i nte_er;

begin

J:=1 ;
k:=O;

for I:=0 to max_rocessors do be_in

k :=k+a ray[l] *J;

J:=J*2 ;

str irl *)

51

05900
0 60O0
061O0
O620O
063O0
064O0
0 6500
O66O0
0 67O0
0 68O0
06900
070O0
071O0
072O0
073 oo
07400
075O0
07600
O77OO
O78OO
07900
080O0
081 O0
08200

O83 O0
084 O0

O85OO
08600

08700
088O0

08900
090 O0

091 O0
092 O0
093 O0
094 O0
095 O0
O96OO

O970 0

09@00
09900
I 0000

10100

1 0200

10 30 0
10 400

10 500

1060 0

1070 0
1 0800

1090 0

1 1000

1110 0

1 1200
1 1300
1 1400

1 1500
11600
1 1700
1 1800
b

end;

end;

conv: : k ;

PR OC ED L_

b egi n

end;

E PREL IM;

writeln(tty ,'Enter file name');

r eadln(t ty) ;

read(t ty,fll ename) ;

writeln(tty,'Enter total number of Qrocessors');

r ead(t ty _ um pr pc) ;

writeln(tty,'Enter number of cases');

r ead(t ty _axcase) ;

PROCED[_ E OUTFI LE;

(*write eutp_ to file and report to tty*)

VA R prevote,J, k,recorf,numfault:inte_er;

begin

wr i t eln (output. c a se ham e) ;

writeln(tty,'case ',casen_me) ;

wr i teln(t ty) ;
for k:--O to maxprocessors do wrlte(output, intreo[k]);

writeln(tty,'working status');

for k:=O to maxprocesso rs do write(tty,intrep[k]);

writeln(tty);

for k:=O to maxprocessors do begin
for .i::O to maxprocesso rs d o tvec[J] ::errors[k,J] ;

prevote:=conv(tvec) + 256*fram_ccunt;

writeln(tty,'error report for processor ' ,k:2);

b inpars (prev ote) ;

write(output. Drevote);

end;
reconf:=c onv(retirln_) + 256*frsmeccunt;

writeln(tty,'Reconfiguration word');

binpars(reconf) ;

wr i teln (out put, r eccnf);

end;

PROCED _ E I NDATA;

(*This procedure does

VA R i .m,n,j:integer;

begin

the actual t est case input*)

writeln(tty,'enter case name');

r eadln(tty) ;

r ead(t ty _ asenam e) ;
writeln(tty,'Enter frsmeccunt');

r ead(t ty ,frame ccunt);
for m:=O to maxprocessors do begin

intrep[m] :=0;

retiring[m] :=0;
for n:=O to maxprocessors do errors[m,n]:=O;

end;
(

writeln(tty,'How

r ead(t ty _ um ou t) ;

i f nunout>O t hen

wr i teln(t
for i:=I

r

...Prepare the intrep array)

many processors are not workirg?');

begi n

ty,'which processors not

to num out d o begin

ead(t ty ,procou t) ;

workir_?');

52

I "19O0
12000
12100
12200
12300
12400
125O0
12600
12700
12800

12900
130 O0

13100

1320 0

13300

13400

1 3500

13600

137 O0

1 3800

13900

14000

14100

1420 0

14300

14400

1 45OO
14600

14700
1 4800

14900
15 000

1 5100

15200

15300
15 400

15 500
15600

1570 0

intrep[proceut]:= I;

end;

end;
(*...Prepare the errors array*)

writeln(tty,'How many processors are faulty?');

J::O;
readln(t ty _qumfault) ;

if numfault>0 then repeat

J::J+1 ;
wrlteln(tty,'wrong processor', J:3);

wrlteln(tty,'whleh Dro_ssor is faulty? ');

r ead(t ty,faul tpr oc) ;
writeln(tty,'how many proeessors r_ort it as faulty?');

r ead(t ty,numo roc);

wrlteln(tty,'which pro_ssors reported it? ');

for i::I to numproc do begin

r ead(t ty #"epr oc) ;

errors[reproe, faul tpr oc]::I;

end

until J :hum fault;

wr iteln (t ty) ;
writeln(tty,'SummarF of Error Reports of all processors');

wr iteln (tty ,'Re porting Fa ul ty');

writeln(tty,'processors processors');

writeln(tty);

for i:=O to maxprocessors do begin

wrlteln(tty);
write(tty,i:3, ' ') ;

for m:=O to maxorooesso rs d o

wr ire(t ty,e rrors[i ,m]:3);

end;
(*...Prepare the reconf word w)

wr iteln(t ty) ;

writeln(tty);
writeln(tty,'How many processors are reconfi_ured out?');

read(t ty p u_rec);
if numrec>0 then be_In

wrlteln(tty,'whlch pro_ssors are reconfi_ured out?');

for i:=I to numrec do begin

53

1 57OO

1 5800

1590 0
16 000

16100

16200

16300

16400
1 65OO

1 6600

16 70 0

1 6800

16 90 0

1 7000

171OO

172OO

173OO

17 400

1 75OO

1 7600

17 7O 0

end;

end;

for

end;

i:=I to numrec do begin

r ead(t ty ,Dr o cr=t) ;

retirir_[proeret]:= I;

(IMAIN PROCEDURE*)

begin

prelim;

i f numoroe-maxprocessors the n begin

r ewr ire(out put, f il e name) ;

for caseno:--1 to maxcase do begin

i ndata;

out file;

end;
c lose(output);

end

else wr iteln(tty,'change m_xoroce ssors,

maxp roces so rs);

cur r er_

end.

value iR w

54

PROGRAM MVTEST

55

00100

00200

00300
0 0400

00500

0 O60 0

00700

OO8OO

OOgO0

0093O

0 O96O

0099O
0 1000

0 10 50

01100

01150

0 1200

01250

0 1300

01400

0 1500
0 16 O0

0 17 O0
018 O0

019 O0
01950
0 2000
02100

0 2200

02300
02400

02500

O2600

02700
02BOO

02900

0 30 O0

O31OO

03200

03300

03312

03325
0 3337

03_0

03375
03400

0 35 O0

03550
03600

O370O
o 3800

03900
0 4000

);
04100

0 420 0

0 4300
04400

0 qSO0
o 4600

O_700

]46OO

PROGR AM MVTEST;

CONST MAX PR OCESS) R S= 5 ;

max v= 1 4 ;
VAR

koun t, kw:i nte_er;

rec onf: i ntege r;
filename: oa_ked a rray[1..8] of char;

working: array[O..maxproeessors] of integer;

MV: ARRAY[O..M_ PROCESSORS, O..MAXV] OF INTEGER;
(" THE MY ARRAY COLUMNS WILL BE USED IN E TO

FORM THE DIFFERENT COMBINATIONS OF ER_R

REPORTS REQUIRED FOR THE VALI_TION *)

E :ARRAY[O..MAXPBOCESSDRS, O..MAXPROCESS)RS] OF INTEGER;

(* E IS THE ARRAY REPRESENTING ER,r, oR _PORTS *)

A :ARRAY[O..I,0..MAXV] OF INTK]RR;
(t A IS THE ARRAY FOR MARKING WHICH PROCS REPORT b)

PROCED UR E ZERO;

(* zero the e array *)

VAR I,J: INT_ER;

b egi n

for i:=O to maxproeessors do

for j::O to maxprocessors do

e[i .J]:=O;

e.nd;

PROCED UR E MVINIT;
(* initialize the my and assoclated

VA R I,J,K,L,M:INTEGE_

begin

a arrays *)

for I:=0 to maxDrocessors do

for m:=O to m_xv do mv[l.m]:-O;

J::O;
for i::O to maxDrocessors - 1 do

for k::i+1 to maxprooessors do begin

mv[i .J]:=1;

my[k ,j] :: I ;
A[O,J]:=I :

A[I,J]:=K ;

J:=J+1 ;

end;
for i::0 to maxproees_ors do worklr_[l]::O;

work in@_ O] ::I ;

working[I] :: I ;

working{ kw] := I ;

(e

by GEXEC *)

outvoted; procs',

reporting, oroe_

*)
E ND;

PROCEDURE DISP(VAR L.J:INT_ER);

(* write the output file for use

VAR I,K, M,S :INTDGER;

begin
koun t: =kount+ I ;

wr iteln(output, 'proc' ,J:2,'

a[O,l] :2,a[1,1] :2, '

i::O to maxprocesso rs
i::O to maxorocessors

m:= I ;

s::O;
for k:=O to maxDrocessors

s:=e[i .k] *re+s;

• ::nlt2 ;

end;
56 ;

for

for

0 failure repcr_

do write(output, worklr_[i]);

do begin

d o begin

04900
05000
051O0
052OO
05203
O52O6
052O9
05212
05215
05300
0 5400

055OO
0 56O 0

0 570 0
05800
O59OO
06000
061 O0
06200

062_ 30
0 6260

06290

06291
06292
06294
06298

O6300
06400

0 650 0
06600

O67OO

06800

06900
070 O0
071 O0

07200

073 O0
074 O0

07415

O 743O
0 7_ 6O

0 7_80

O75OO

076O0

07_0

O78OO

079O 0

s:=s + 25@kount;
write(output, q) ;

end;

reconf:=reconf + 256*kount;

(*...for mnre t.hmn I proc. out.
constants added to it:

I - for one proc. out

3 - for two p-ocs, o,,t

? - for 3 Drocs. out

wr i teln(out put, r econf) ;

end;

PROCEDU_ E MATCH;

VAR I, J,K,L, M:INTEGE_

begin
for i::0 to maxv do

r ec onf

(* mark

end;

*)

(*.. I is nol. of my*)

for J:=O to maxprocessors do bp_in

zero;

for i:=0 to mxprocesso rs do

e[l .J] :=mv[i .1] ;

pro ca 0 and I excess disagreements here*)

e[4,0]:--I ;

e[5,01::1 ;

e[_,2]::I;
e[5,2]:=I;

e[4,1]:= I;

e[5, I]:: I ;
dlsp(L,J);

end;

(*MAIN PROCEDb_ E*)

B EGIN

writeln(tty,'2 processors

readln(tty);

read(t ty ,fll enam e) ;

r ewr ire(output, f il e name) ;

koun t: = 0 ;

wrlteln(tty,'enter reconf');

read(tty _-eccnf);

(

,)

END.

writeln(tty,'which add[tlonal.

read(t ty,kw);

MV INIT;
MATCH:

c lose(out put) ;

writeln(tty ,'file complete');

should hav_

tet, enter filename');

proc. out? ');

5?

PROGRAM GEXEC

.58

00100
00200
00300
00400
00500
00600
00700
00B00
00900
01000

01100
01200
01300

01400

01500

016 O0

01700

01800
01900
020 O0
02100
02200
02300

02400

02500

02600

027 O0
02800

02900

03000

03100
0 320 0
03300
0 3400

0 35 O0
03600

0)700

03800
03900
04000

04100

04200

04300

04400

04500

04600
04700

04800

04900

05000
051 O0

05200

05300

05400

PROGRAM GEXEC;
(*This is the set

executive *)

of routines associated with the

CONST

TYPE

VAR

M AX PR OC ESSOR S=5 ;

maxs ub fr ame=50;

threshold=2 ;

maxbu fs=l ;

e rrerr=1 ;

p roees so r=O..maxD r ocesso rs ;
proctnt:array[proeessor] of Inteoer;

oroebool=array[proeessor] of boolean;
buffer=O..maxbufs;

WO RK INC: PR OC BO OL;

F RAMECO UNT, CASENO: INTEGER;
PREVOTE:ARRAY[BUFFER] OF PROCINT;

R EGO NF :I NTECE R;

PR OC ED UR E BI NPA R S(VA R N UM :I NT EGE R) ;
(*Droeedure to represent an tnteoer as
vat

beatn

a 16 bit

btnr: array[0..15] of intecer;

t num :i nteaer;
d ivi s, t, t :i nteqev;
byte: packed array[1..20] of ehar;

d ivl s: :32768;
if num>65535 then beain

wrlteln(t ty,.overflow.);
num:=num rood 65535;

end;

t num: =n uw_;

.f::O;
for I:=15 do_nto 0 do beclln

if tnum dlv divls>=1 then becln

tnum:=tnum mod dlvls;
blnr[l] :=I

end

else binr[l]::O;

dtvls:=divts dtv 2;
J :=,I+I ;
if blnr[i] =I then byte[.f]:=.l.

else byte[J] := j3.;

if (i

end:

end;

rood 4=0) t hen becfn
J:=I+I ;
byte[._] :=..;

wr lteln(t ty,byte);
wr i teln (t tv) :

59

q loba I

str t nc *)

05500
05600
0 570 0
05800
05900
06000
061 O0
06200

06300
06400

06500
06 600

06700
06800
06900
070 O0
0 71 O0
07200

07300
0780 0

0 790 0
08000
081 O0

08200

08250
083 O0

08400

08500

085 50
08600
08700

08800

08900
O9000
091 O0

091 50
092 0 0
09300
09400
09500
095 50
0970 0
09800
09850

09900
I 0000
10100
10200

1 0300

10400

1O5OO

10600

1070 0
10800

end;

PROCEDURE PR EGEXE C;

(*This orocedure copies the least stnnlficant bits

error reporter word bits into the most siantficant
after checkinq the frame number *)

of t he

_osltions

VA R

excount:INTEGER;

ERR :INTEGE R;

3, M:INTEGE R;

heain

end;

for

end;

J:=O to maxDrocessors do beoJn

excount:=prevote[errerr..f] div 256;
err:=prevote[errerr,.1] rood 256;
if excount=framecount then

p r ev ote[e rrerr,.i] : =25 7*er r

else wrtteln(t ty,.processor.,._ :3, . excount mismatch.);

PROCEDURE AL TCEXE C;

(*This is the alternate qlohal executive*)

const maxd[v=32;
VA R

beqin

end;

R ECO NF A, DIVISOR, MU LT, 3,K, L, M :I NTECE R;

E RCOUNT: PROCINT;

LAST: I NTECER;

for J:=O to maxprocessors do ercount[J]:=O;

(*...initialize ercount*)

FOR 3:= maxprocessors downto 0 do

if workir_[J] then beqln

(*...do for each error report*)

dlvl so r: =max div ;
for k:=maxDrocessors downto 0 do besln

(*...do for each position of report*)

if J=k then last:=O

else last:=prevote[errerr,.i] dlv divisor;

if odd(last) then ereount[k]:=ercount[k]+1 ;

divlsor::dlvisor dlv 2;
end

end;

(*...now _£te

r econf a .=0;

mult: =I ;
for I:=0 to maxorocessors do beqin

if ercount[I]>--2 then

mult:=mult*2 ;

end;

wrttein(tty,.alternate reconf word.):

blnDars (reconfa);

r ec onf a*)

rec onf a :=r ec onfa+mult ;

60

1 0900

1 1000

1 1100

1 1200

1 1300

1 1 400

1 1500

1 1600

1 1700

1 1800

1 1900

1 2000
12100

12200
1 2300

1 2400

1 2500

12600

1 2700

1 2800

1 2900
130 O0

1 3100

1320 0

13 300

13400
13500

1 3600

1 3700

I 3800

13900
14 000

14100

1 4200

1430 0

14 kX)0

14500

1 4600

1 4700

14800

14900
15 000

15100

1 5200

15300
15400

15 50 0

15 60 0

15 70 0
1580 0
15900
16 000

16100

16200

PROCEDURE CEXECTESTI

(*Global Executive Acceptance test*)

TYPE
ZERO ONE:O..1 ;

VAR

bealn

end;
PR OC El)UR

(*Re add

vat

DIVISOR,CHECK, I,3,SUM :INTEGER;

F AI LFLG: BO OLEAN ;

LAST DIG:ZERO ONE;

dlvl sor:=l ;

f allfl q: =f als e;
for 1:=O to maxprocessors do bealn

(*...do for each oosltlon of report*)

(*Imolement error word shifts here*)

sum :=0;
for i:=O to maxDrocessors do beqln

(*...do for each error report*)

last dtq:=(prevote[errerr, J] dtv divisor)

rood 2 ;
if (not worklnq[t]) or (t=J)

then last dtq:=O;
sum:=sum + Tast dta;

end;
check:=reconf dlv dtvtsor;

If odd(check) then bectn
lf(sum<2)and(worklnc[l]) then fallflq:=t_Je

end
else if sum>=2 then fallflq:=true;
dtvtsor: =d ivi sor*2 ;

end;
if fallflq then altaexec

else wrlteln(tty,.alobal Executive OK.);

E INFILF ;
ata from file insut after main procedure has ooened it*)

c asename: o aoked

Intrel):procint ;
k:l ntecler;

array[1..40] of char;

becin
readIn(Inout, casename) ;

for k:=O to maxprocessocs
for k: =0 to maxprocessors

read in (t no ut, r econf);
wrlteln(ttv);

wr i teln (t t.v) ;
wr i teln (t ty ,c asename) ;

wr i te(t ty ,.Ca se.,c aseno:3, . Enter fr am ecount

read(t ty,framecount);

wrlteln(t ty);

writeln(t tv,.Failed orocessors.);

do read(Input,lntrep[k]);

do read(t nput, prevote[errerr, k]);

.);

61

1 '6300

1 6#00

16 5O0
1 6600
16700
16800
1690O

1 7000
17100
17200
17300
17400
17 500

17 600
17 700
17800

1 7900
180O0
1810O
1820O
18300
18400

18500
18600
18 700
18 800
1 8900
19000
191 O0

19200
19300
19400
19 500
19600
19700
19 80 0
1990 0
20 000
,.ft.

end;

for k:=O to maxprooessors do beQin

write(t ty,i ntrep[k] :3);
if intrep[k]=1 then working[k]:=false

else work Ir_[k]::t rd e;
end;
wrlteln(t ty);
for k: =0 to maxprocessors do beain

wrlteln(tty,.error reoort for processor., k: 3);

b ino ars (or ev ote[e rr err, k]);

endl

writeln(tty,.Reconflouratlon Word.);

b Inp ars (r econf);

PROCEDURE PRELIM:
(*Initlal orompts and openina of data file*)

var filename:packed array[1..8] of char;
bealn

end;

wrlteln(tty,.Global Executive Recovery

writeln(tty,.Enter Data File.);

read In (t ty) ;

r ead(t ty ,f llename);
reset(input, fll ename);

Block Driver --.)i

(*MAIN

beain

end.

PR OC ED UR E*)

prelim ;
caseno:=O;

while not eof(Innut) do beQin

c aseno:=c aseno+1 i

inflle;
oreoexec;

aexectest

end;
wrlteln (t tv,.Te sts Comb 1ere.);

c los e(i no ut);

62

APPENDIX C. DEMONSTRATION OF VALIDATION PROCEDURES

This appendix contains examples of output which demonstrate the manner In which
the fault-tolerant software for the error reporter and the global executlve were
validated. Section C.1. describes the output from DRIVER used to demonstrate
the correctness of the error reporter, and section C.2 describes the GEXEC

output which showed the proper operation of the fault tolerant global executlve.

C.1. Error Reporter Validation

Figure C.1 is the output generated by the DRIVER program using data for 1
processor out. A total of five "frames" (l.e. test cases) are shown. The first
line is the abbreviated title "proc 1 exc undtctd err", which is the designation

for processor no. 1 having an excess number of errors undetected by the primary
error reporter. The next line shows the value of framecount and excount (which
were taken to be the same for the cases shown here). The next item on the

output Is a table showing the number of errors counted by the voter, the error
reporter output (0 = no excess disagreements, 1 = excess disagreements), and the
working status (0 = not worklng, 1 = working) for each of the six processors.
The following line shows the integer value of the error word Including the frame
count encoded in the 8 most significant bits, and Immediately below it ls the

binary representation produced by procedure BINPARS (see appendix B).

Because the primary error report (contained in the file) was Incorrect, the
error reporter acceptance test Invoked the alternate, which generated an error
report whose integer value (not Including the frame count) Is shown on the next
line and whose binary representation (Including the frame count) Is shown

immediately below.

Thls particular case demonstrates that the acceptance test can detect failure of

the primary error reporter to note an excess number of disagreements In
processor 1 when no other processors have failed and when all are working.
Succeeding cases shown in this output demonstrate that failure of the prlmary
routine to detect excess disagreements for processors 2, 3, 4, and 5 when no
processors have been retired or have become faulty in this frame. The entlre

validation sequence described in section 2.5 consists of performing a sequence
similar to this for processors 0 through 6 when 1, 2, or 3 additional processors

become faulty in the current frame and when 1, 2, or 3 other processors have
been retired. Although these validations were performed, they are not Included

in this report for the sake of brevity.

63

e rrl

proc I
frame

r eadv

5 repetitions

exe undt ctd e rrr

no . lexecu tion I

p rocesso r

0

I

2

3

4

5

primary error word=

0000 0001 0000 0000

256

voter error

0

3

0

0

0

a it erate

alt erna te

0000 0001

er rot reporter invoked
er rot wo rd= 2

0000 0010

erro r report

0

0

0

0

0

0

work i r_

I

I

I

I

I

I

proe 2 exc undt etd err
frame no . 2execution 2

processo r voter error

0 0

1 0

2 5

3 0

4 0

5 0

primary error word= 512
0 000 0010 0000 0000

alterate error reporter invoked
alternate er ror word= 4

0000 0010 0000 0100

error repo rt

0

0-

0

0

0

0

working

I

I

I

I

I

I

FIGURE C.I. Error Reporter ValiCatlon Output

64

3 e×c undt ctd
no . 3e xecu tion

processor

0

I

2

3

4

5

error word=

001 I 0000 0000

di _ r
3

voter error

0

0

0

4

0

0

primary 768
0000

alterate error reporter invoked
alternate er mr word= 8

0000 001 1 0000 1000

error report

0

0

0

0

0

0

proc 4 exc undt ctd err
frame _ . 4executlon

proces_r voter error error report

0 0 0

I 0 0

2 0 0

3 0 0

4 6 0

5 0 0

pr.T=_/ erroc word: 1024
:]-)OC 0100 0000 0000

alterat_ er ror reporter invoked
a!t ernate er Por word: 1 6

0)C< 3!00 0001 0000

work ir_,

I

]

I

I

I

_o rk irg

I

I

I

I

I

I

Figure C.I. (continued) Error Reporter Validation Output

65

proc 5 exe undt ctd err
frame no . 5execution 5

process) r

0

1

2

3

4

5
f

primary error word= 1280
0000 0101 0000 0000

h •

voter error error report

0 0

0 0

0 0

0 0

0 0

3 0

work ing

I

I

I

I

I

I

alterate error reporter invoked
alternate er nor word= 32

0000 0101 0 010 0000

Figure C.1. (continued) Error Reporter Validation Output

66

C.2. Global Executive

Figure C.2 shows an excerpt from the output generated by program GEXEC. Two
cases are shown from an MVTEST generated file containing cases In which

processor I Is marked as having failed by processors 5 and 6, and I additional

processor Is marked for retirement In the reconflguratlon word by the prlmary

global executive. The first line shows the title of the case, I.e. "proc 0

outvoted; procs O, I reporting" . Thus, processor 0 Is marked as having excess

disagreements by processors 0 and I, and processor I is Indicated as having

excess disagreements In the error reports of processors 5 and 6. The second
line of the output Is the frame count check, which, In this case Is matches the

execution count so that PREGEXEC finds that all error reports are current.

The following line gives the configuration of the system, and shows that no
processors are failed (l.e. retired). The following 6 output Items are the

binary representations of the slx processor error reports. The error report
from processor 0 is marking itself for retirament; the report from processor 1
agrees. No processors are Indicated as faulty In the error reports of

processors 2 and 3, but processors 4 and 5 indicate that processor i should be
retired.

The next Item Is the reconflguratlon word generated by the primary global
executive. I. Indicates ,hat processor 0 should be retired, and that the

current frame count Is I (In blt position 8). The global executive acceptance

test detects an error, and Invokes the alternate routine, which marks processor

I for retlrement as shown In the last output item.

This par, Icular case demonstrates ,hat the acceptance test can detect the error

of srmultaneously Incorrectly marking a functional processor as for retlrament

(processor O) and not detecting a failed processor (processor I). The second

case shown in figure C.2 shows that processors O, I, 4, and 5 all Indicate that
processor I should be retired, but that the primary reconflguratlon word marks

processor 0 for retirement. Once again, the recovery block can detect and

correct the error.

Close to 2,000 cases of thls type were run, and in order to reduce the amount of
output, GEXEC was modified to show only the case title, whether or not a
processor which should have been retired was still generating error reports,
whether the prlmary global executive output was accepted, and if not, the value
of the alternate acceptance test was shown. Figure C.3 shows the beginning of
such an output for failure ,o detect one faulty processor when one other was
retired. The first item on ,he page Is the prompt generated by the modified

GEXEC program for the data file name. The next Items show that the
reconflguratlon word is given as 0 throughout the flle (I.e. no processors are
marked for retirement by the primary global executive In ,his set of test cases)
and that processor 1 is Indicated as not working. The set of posslbllltles
generated within GEXEC did not exclude processors marking themselves for

retirement or having not working processors generating error reports. Thus, ,he
first test case of figure C.3, processors 0 and 1 marking processor 0 for
retirement. Because this condition would not lead to the retirement of

processor O, the primary error word is correct. In the secoed case, processor 1
Is Indicated as having excess disagreements by processors 0 and 1. Because
processor 1 should have been retired, this is possibly a serious condition, and

6?

the global executive Indicates that there may be a problem (by itself, the
global executive can not diagnose and trace the problem) to the system In the
message "retired processor working". In the thlrd case, the error report from a

retired processor along wlth only one other processor Indlcates that a third

should be marked for retlrement. This Is not a sufflclently strong case for

retiring processor 2, so the reconflguratlon word Is correct.

68

proc 0 outvoted; procs 0 I reportir_
Case I Enter framecount I

Failed processors
0 0 0 0 0 0

error report for processor
0000 0001 0000 0001

0

error report for processor I
0000 0001 0000 0001

error report for processor 2
0000 0001 0000 0000

error report for processor 3
0000 0001 0000 0000

error report for processor 4
0000 0001 0000 0010

error report for processor 5
0000 0001 0000 0010

Reconfi_uratJs n Word-

0000 0001 0000 0001

alternate reconf word

0000 0000 0000 0010

Figure C.2. Global Executive Validation Output

69

proc I outvoted; proes 0 I reporti_
Case 2 Enter frameccunt 2

Failed processors
0 0 0 0 0 0

error report for processor
0000 0010 0000 0010

error report for processor 1
0000 0010 0000 0010

error report for processor 2
0000 0010 0000 0000

error report for processor 3

0000 0010 0000 0000

error report for processor 4
0000 0010 0000 0010

error _port for processor 5
0000 0010 0000 0010

Re conf_urat_ n Wo rd

0000 001 I 0000 0001

alternate rec onf wo rd

0000 0000 0000 0010

Figure C.2. (continued) Global Executive Validation Output

7O

rectal _nd workina held constant

Reconfiq,lration _ rd (reconf)
O000 0001 o000 (I000

Processor stat,i:_em; O vnrkinq/ i
0 I [) 0 0 0

failed

.- !

i.
!

Figure C.5.

proc () o_,tv0ted; pro_
global Executive OK

0 1 reoortim

proc I outvoted; procs
retired _roc. work inn

global Executive OK

O 1 reporting

proc 2 outvoted; procs 0
global E×eo_tive OK

proc 3 out_,oted; procs 0

global Exe_tive OK

proc 4 outvoted; procs 0

global Executive OK

I r epo rt in_

-" ",{,'" _li_,

1 r epo rt i _ - • ":_

I reporting

proc 5 outvoted; procs 0 1 reportlm

global Executive OK

proc 0 outvoted; procs 0 2 reportln_

global Exe_tive OK

proc I outvoted; procs

retired prec. wo_in_

retired proc. work im

global Executive OK

0 2 reportim

proc 2 outvoted; pro_ 0 2 reporting

global Exemtive OK

proc 3 out_,oted; procs
alternate reconf word

0000 0000 0000 I000

0 2 reporti_

proc 4 outv, oted; procs 0 2 reportim
alternate reconf word
0000 0000 OIO01 0000

proc 5 outvoted; proc_
alternate reconf word
O00D 0000 OO1{) 000()

0 2 reportlm

proc O outvoted; !)roc_ 0 3 reportim

global Execu t ive OK

proc 1 ollt_:oted; procs
retired 9roc. wo _ inn

retired proc. wod< isl

global R×ecut[ve ,)K

i} 3 reportins

proc 2 outvote_]; ;)rn-_:. ,) 3 renortin_

alternate reconf word

OJ(J(] :)(]0(]()C]OD lll{)O

Global ExecuTive (VALGEX) ValIdai'Ion OuTpuT

71

B_

AER078

Aerospace Corp., Fault Tolerant Software Study, NASA Contractor Report No.
145298, Advanced Programs Division, Aerospace Corp., February, 1978

HECH76

H. Hecht, "Fault Tolerant Software for Real Tlme Applications", ACM Computin 9

Surveys, Vol. 8, No. 4, p. 391, December, 1976

RAND75

B. Randell, "System Structure for Software Fault Tolerance", IEEE Transactions
on Software Englneerlna, Vol. SE-1, No. 2, p. 220, June, 1975

?2

1. Report No. 2. G_ernment Accession No.

165874

4. Title and Subtitle

Fault Tolerant Software Modules for SIFT

7. Author(s)

Myron Hecht and Herbert Hecht

9. PerformingOr_nization Name and Address
SoHaR, Inc.

1040 South LaJolla Ave.

Los Angeles, CA 90035

12. Sponsoring Agency Name and Addr_s

NASA-Langley Research Center

Hampton, VA 23665

3, Recipient's Catalog No.

5. Report Date
April 1981

6. Performing Organization Code

8. Performing Organization Report No.

SoHaR-TR-81-04

10. Work Unit No.

'11. Contract or Grant No.

NAS I- 15428

13. Type of Report and Period Covered

Final Engineering Report

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The Recovery Block technique for fault-tolerant software was applied to the operating

system of the SIFT fault-tolerant computer. The original operating system serves to

implement algorithms for hardware fault tolerance, and has been subjected to rigorous

logical analysis, but does not incorporate redundancy for tolerating its own faults,

(e.g., programming errors). Fault-tree analysis was used to validate acceptance tests

for application to alternate (redundant) versions of several operating system functions

The tests and several alternate program versions were implemented in Pascal. This

application of the Recovery Block technique was more difficult than usual because the

subject program was essentially logical in nature. Some limitations were encountered

in constructing alternate routines that are truly independent of the primary ones

and also of the acceptance test.

17. Key Words(Suggested by Author(s))
Fault-Tolerant Software, Recovery Blocks,

Fault-Tolerant Computers, Fault-Tree

Analysis, Software Validation

19. Security Classif,(of this report)

N-305

18. Distribution Statement

20. Security Classif.(of this page) 21. No. of Pages 22. Price

